30 | 0 | 10 |
下载次数 | 被引频次 | 阅读次数 |
目的 探讨肠道菌群和宿主脂质代谢物相互作用对血脂异常的影响。方法 数据来源于2018年“中国健康与营养调查”及2022—2023年“中国发展与营养健康影响队列调查”。采用巢式病例-对照研究设计,利用人口学信息按年龄和性别1∶1匹配,纳入新发血脂异常患者229例(病例组)和229例血脂正常组(对照组)。对已采集的空腹血样采用超高效液相色谱-串联质谱法(UPLS-MS/MS)检测血清脂质代谢谱,对粪便样本采用16S rRNA高通量测序分析肠道菌群结构。通过单变量分析方法筛选组间差异代谢物及菌群,结合Spearman相关分析和条件Logistic回归模型探究菌群-脂质代谢物相互作用对血脂异常的影响。结果 共鉴定18种差异脂质代谢物(9种上调,9种下调)及5个差异菌群:狭义梭菌属1 (Clostridium sensu stricto 1)、穆里巴库菌科(Muribaculaceae)、霍尔德曼氏菌属(Holdemanella)、韦荣氏球菌属(Veillonella)和粪源菌属(Faecalitalea)。相关分析显示2个菌属与5种代谢物呈显著关联。条件Logistic回归表明:狭义梭菌属1 (Clostridium sensu stricto 1)丰度增加与血脂异常风险降低相关(OR=0.69,95%CI 0.41~0.73,P=0.04),而甘油三酯(15:0_18:2_18:2)水平升高显著增加血脂异常发病风险(OR=1.94,95%CI 1.08~3.49,P=0.03)。结论 狭义梭菌属1(Clostridium sensu stricto 1)可通过降低脂质代谢物甘油三酯(15:0_18:2_18:2)水平,从而降低血脂异常的发生风险。
Abstract:OBJECTIVE To investigate the mechanisms by which the interaction between gut microbiota and host lipid metabolites affects dyslipidemia.METHODS Utilizing data from the China Health and Nutrition Survey(2018) and the “China Development and Nutrition Health Impact Cohort Study”(2022-2023), a nested case-control study design was employed. A total of 229 newly diagnosed dyslipidemia patients(case group) and 229 normolipidemic individuals(control group) were enrolled through 1∶1 matching by age and gender based on demographic information. Fasting blood samples collected were analyzed for serum lipid metabolic profiles using ultra-performance lipid chromatography-tandem mass spectrometry(UPLC-MS/MS), and fecal samples were subjected to 16 S rRNA high-throughput sequencing to analyze the structure of gut microbiota. Univariate analyses were performed to identify differentially expressed metabolites and microbial taxa between groups, followed by Spearman correlation analysis and conditional logistic regression modeling to explore the impact of microbiota-metabolite interactions on dyslipidemia.RESULTS A total of 18 differential lipid metabolites(9 upregulated, 9 downregulated) and 5 significant bacterial taxa were identified: Clostridium sensu stricto 1, Muribaculaceae, Holdemanella, Veillonella, and Faecalitalea. Correlation analysis revealed significant associations between 2 bacterial taxa and 5 metabolites. Conditional logistic regression indicated that increased abundance of Clostridium sensu stricto 1 was associated with a reduced risk of dyslipidemia(OR=0.69, 95%CI 0.41-1.50, P=0.04), while elevated levels of triglyceride TG(15:0_18:2_18:2) significantly increased the risk of developing the condition(OR=1.94, 95%CI 1.08-3.49, P=0.03).CONCLUSION Clostridium sensu stricto 1 may reduce the risk of dyslipidemia by lowering the level of the lipid metabolite triglyceride(15:0_18:2_18:2).
[1] 中国血脂管理指南修订联合专家委员会.中国血脂管理指南(2023)[J].中国循环杂志,2023,38(3):237-271.
[2] 国家心血管病中心.中国心血管健康与疾病报告2021[M].北京:科学出版社,2022.
[3] LUO J,YANG H,SONG B L.Mechanisms and regulation of cholesterol homeostasis[J].Nat Rev Mol Cell Biol,2020,21(4):225-245.
[4] YU YJ,RAKA F,ADELI K.The role of the gut microbiota in lipid and lipoprotein metabolism[J].J Clin Med,2019,8(12):2227.
[5] MORALES C,ROJAS G,REBOLLEDO C,et al.Characterization of microbial communities from gut microbiota of hypercholesterolemic and control subjects[J].Front Cell Infect Microbiol,2022,12:943609.
[6] POPKIN B M,DU S F,ZHAI F Y,et al.Cohort profile:the China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China,1989-2011[J].Int J Epidemiol,2010,39(6):1435-1440.
[7] 王惠君,张兵,王志宏,等.2022—2023年中国发展与营养健康影响队列调查[J].卫生研究,2024,53(6):861.
[8] SUN S,WANG H,TSILIMIGRAS M C,et al.Does geographical variation confound the relationship between host factors and the human gut microbiota:a population-based study in China[J].BMJ Open,2020,10(11):e038163.
[9] BOLYEN E,RIDEOUT JR,DILLON M R,et al.Reproducible,interactive,scalable and extensible microbiome data science using QIIME 2[J].Nat Biotechnol,2019,37(8):852-857.
[10] CALLAHAN B J,MCMURDIE P J,ROSEN M J,et al.DADA2:High-resolution sample inference from Illumina amplicon data[J].Nat Methods,2016,13(7):581-583.
[11] 中国血脂管理指南修订联合专家委员会,中国血脂管理指南(基层版2024年)[J].中华心血管病杂志,2024,52(4):330-337.
[12] MARTIN F P,DUMAS M E,WAQNG Y L,et al.A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model[J].Mol Syst Biol,2007,3:112.
[13] CHATELIER E L,NIELSEN T,QIN J,et al.Richness of human gut microbiome correlates with metabolic markers[J].Nature,2013,500(7464):541-546.
[14] KOSTIC A D,GEVERS D,SILJANDER H,et al.The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes[J].Cell Host Microbe,2015,17(2):260-273.
[15] KARLSSON F H,TREMAROLI V,NOOKAEW I,et al.Gut metagenome in European women with normal,impaired and diabetic glucose control[J].Nature,2013,498(7452):99-103.
[16] FU J,BONDER M J,CENIT M C,et al.The gut microbiome contributes to a substantial proportion of the variation in blood lipids[J].Circ Res,2015,117(9):817-824.
[17] CHIANG J Y.Bile acid metabolism and signaling[J].Compr Physiol,2013,3(3):1191-1212.
[18] LEFEBVRE P,CARIOU B,LIEN F,et al.Role of bile acids and bile acid receptors in metabolic regulation[J].Physiol Rev,2009,89(1):147-191.
[19] TOAREK J,GADZINOWSKA J,MLYNARSKA E,et al.What is the role of gut microbiota in obesity prevalence?a few words about gut microbiota and its association with obesity and related diseases[J].Microorganisms,2021,10(1):52.
基本信息:
DOI:10.19813/j.cnki.weishengyanjiu.2025.05.004
中图分类号:R589.2
引用信息:
[1]欧阳一非,张晓帆,关方旭等.基于肠道菌群和靶向脂质代谢组分析中国十省(自治区)成人血脂异常的巢式病例-对照研究[J].卫生研究,2025,54(05):732-737.DOI:10.19813/j.cnki.weishengyanjiu.2025.05.004.
基金信息:
国家重点研发计划(No.2021YFE0114200); 国家财政项目(No.102393220020070000016); 中国健康与营养调查(No.R01-HD30880,No.DK056350,No.R24HD050924,No.R01-HD38700)